The following Protocol contains medical necessity criteria that apply for this service. It is applicable to Medicare Advantage products unless separate Medicare Advantage criteria are indicated. If the criteria are not met, reimbursement will be denied and the patient cannot be billed. **Preauthorization is required and must be obtained through Case Management.** *Please note that payment for covered services is subject to eligibility and the limitations noted in the patient’s contract at the time the services are rendered.*

Description

Hematopoietic Stem-Cell Transplantation

Hematopoietic stem-cell transplantation (HSCT) refers to a procedure in which hematopoietic stem cells are infused to restore bone marrow function in cancer patients who receive bone-marrow-toxic doses of cytotoxic drugs with or without whole-body radiation therapy. Bone marrow stem cells may be obtained from the transplant recipient (autologous HSCT) and can be harvested from bone marrow, peripheral blood, or umbilical cord blood and placenta shortly after delivery of neonates. Although cord blood is an allogeneic source, the stem cells in it are antigenically “naïve” and thus are associated with a lower incidence of rejection or graft-versus-host disease. Cord blood is discussed in greater detail in a separate Protocol.

Preparative Conditioning for Hematopoietic Stem-Cell Transplantation

Autologous HSCT necessitates myeloablative chemotherapy to eradicate cancerous cells from the blood and bone marrow, thus permitting subsequent engraftment and repopulation of bone marrow space with presumably normal hematopoietic progenitor cells. As a consequence, autologous HSCT is typically performed as consolidation therapy when the patient’s disease is in complete remission. Patients who undergo autologous HSCT are susceptible to chemotherapy-related toxicities and opportunistic infections prior to engraftment but not graft-versus-host disease.

Astrocytomas and Gliomas

Diffuse fibrillary astrocytomas are the most common type of brain tumor in adults. These tumors are classified histologically into three grades of malignancy: grade II astrocytoma, grade III anaplastic astrocytoma, and grade IV glioblastoma multiforme. Oligodendrogliomas are diffuse neoplasms that are clinically and biologically most closely related to diffuse fibrillary astrocytomas. However, these tumors generally have better prognoses than diffuse astrocytomas, with mean survival times of 10 years versus two to three years, respectively. In addition, oligodendrogliomas appear to be more chemosensitive than other types of astrocytomas. Glioblastoma multiforme is the most malignant stage of astrocytoma, with survival times of less than two years for most patients.

Treatment of primary brain tumors focuses on surgery, either with curative intent or optimal tumor debulking. Surgery may be followed by radiation therapy and/or chemotherapy. Survival after chemoradiotherapy is largely dependent on the extent of residual tumor after surgical debulking. Therefore, tumors arising in the midline, basal ganglia, or corpus callosum or those arising in the eloquent speech or motor areas of the cortex, which typically cannot be extensively resected, have a particularly poor outcome. Treatment of children younger than
three years is complicated by the long-term effects of radiation therapy on physical and intellectual function. Therefore, in young children, radiation of the central nervous system (CNS) is avoided whenever possible.

Note: Astrocytomas and gliomas arise from the glial cells. Tumors arising from the neuroepithelium constitute a separate category of malignancies that include CNS neuroblastoma, medulloblastoma, ependymoblastomas, and pinealoblastomas. Collectively these tumors may be referred to as primitive neuroectodermal tumors (PNETs). Ependymomas also arise from the neuroepithelium but, because of their more mature histologic appearance, are not considered a member of the PNET family. The use of high-dose chemotherapy in tumors arising from the neuroepithelium is addressed in a separate Protocol.

Corporate Medical Guideline

Autologous hematopoietic stem-cell transplantation is **investigational** as a treatment of malignant astrocytomas and gliomas. (The latter diagnosis includes both glioblastoma multiforme and oligodendroglioma.)

Services that are the subject of a clinical trial do not meet our Technology Assessment Protocol criteria and are considered investigational. *For explanation of experimental and investigational, please refer to the Technology Assessment Protocol.*

It is expected that only appropriate and medically necessary services will be rendered. We reserve the right to conduct prepayment and postpayment reviews to assess the medical appropriateness of the above-referenced procedures. **Some of this Protocol may not pertain to the patients you provide care to, as it may relate to products that are not available in your geographic area.**

References

We are not responsible for the continuing viability of web site addresses that may be listed in any references below.

1. Technology Evaluation Center (TEC). High-dose chemotherapy with autologous stem cell support for high-grade glial tumors of the brain in adults. 1994 TEC Assessments; Volume 9, Tab 34.

15. NGS LCD for Stem Cell Transplantation (L30183), 5/16/2011.