This protocol considers this test or procedure investigational. If the physician feels this service is medically necessary, preauthorization is recommended.

The following protocol contains medical necessity criteria that apply for this service. The criteria are also applicable to services provided in the local Medicare Advantage operating area for those members, unless separate Medicare Advantage criteria are indicated. If the criteria are not met, reimbursement will be denied and the patient cannot be billed. Please note that payment for covered services is subject to eligibility and the limitations noted in the patient’s contract at the time the services are rendered.

<table>
<thead>
<tr>
<th>Populations</th>
<th>Interventions</th>
<th>Comparators</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individuals:</td>
<td></td>
<td></td>
<td>Relevant outcomes include:</td>
</tr>
<tr>
<td>• With cancer who</td>
<td></td>
<td></td>
<td>• Overall survival</td>
</tr>
<tr>
<td>are initiating</td>
<td></td>
<td></td>
<td>• Disease-specific survival</td>
</tr>
<tr>
<td>chemotherapy</td>
<td>Interventions of interest are:</td>
<td>Comparators of interest are:</td>
<td>• Test accuracy</td>
</tr>
<tr>
<td></td>
<td>• Chemoresistance assays</td>
<td>• Chemotherapy selection without chemoresistance assay</td>
<td>• Test validity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Quality of life</td>
</tr>
<tr>
<td>Individuals:</td>
<td></td>
<td></td>
<td>Relevant outcomes include:</td>
</tr>
<tr>
<td>• With cancer who</td>
<td></td>
<td></td>
<td>• Overall survival</td>
</tr>
<tr>
<td>are initiating</td>
<td>Interventions of interest are:</td>
<td>Comparators of interest are:</td>
<td>• Disease-specific survival</td>
</tr>
<tr>
<td>chemotherapy</td>
<td>• Chemosensitivity assays</td>
<td>• Chemotherapy selection without chemosensitivity assay</td>
<td>• Test accuracy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Test validity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Quality of life</td>
</tr>
</tbody>
</table>

Description

In vitro chemoresistance and chemosensitivity assays have been developed to provide information about the characteristics of an individual patient’s malignancy to predict potential responsiveness of their cancer to specific drugs. These assays are sometimes used by oncologists to select treatment regimens for an individual patient. Several assays have been developed that differ with respect to processing of biologic samples and detection methods. However, all involve similar principles and share protocol components including: (1) isolation of cells and establishment in an in vitro medium (sometimes in soft agar); (2) incubation of the cells with various drugs; (3) assessment of cell survival; and (4) interpretation of the result.

Summary of Evidence

For individuals who have cancer who are initiating chemotherapy who receive chemoresistance assays, the evidence includes correlational observational studies. Relevant outcomes are overall survival, disease-specific survival, test accuracy and validity, and quality of life. Some retrospective and prospective correlational studies have suggested that chemoresistance assays may be associated with chemotherapy response. However,
prospective studies have not consistently demonstrated that chemoresistance assay results are associated with survival. Furthermore, no studies were identified that compared outcomes for patients managed using assay-directed therapy with those managed using physician-directed therapy. Large, randomized, prospective clinical studies comparing clinical outcomes are needed. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have cancer who are initiating chemotherapy who receive chemosensitivity assays, the evidence includes a randomized controlled trial, nonrandomized studies, and correlational observational studies. Relevant outcomes are overall survival, disease-specific survival, test accuracy and validity, and quality of life. The most direct evidence on the effectiveness of chemosensitivity assays in the management of patients with cancer comes from several studies comparing outcomes for patients managed using a chemosensitivity assay with those managed using standard care, including a randomized controlled trial. Although some improvements in tumor response were noted in the randomized controlled trial, there were no differences in survival outcomes. One small nonrandomized study reported improved overall survival in patients receiving chemosensitivity-guided therapy compared with patients receiving standard chemotherapy. A number of retrospective and prospective studies of several different chemosensitivity assays have suggested that patients whose tumors have higher chemosensitivity have better outcomes. Currently, additional studies to determine whether the clinical use of in vitro chemosensitivity testing leads to better outcomes are needed. The evidence is insufficient to determine the effects of the technology on health outcomes.

Policy

In vitro chemoresistance assays, including but not limited to, Extreme Drug Resistance Assay are considered investigational.

In vitro chemosensitivity assays, including but not limited to, the Histoculture Drug Response Assay, a fluorescent cytoprint assay, the ChemoFx assay, or the CorrectChemo assay, are considered investigational.

Medicare Advantage

For Medicare Advantage the chemosensitivity assay ChemoFX® is unlikely to impact therapeutic decision-making in the clinical management of the patient and is considered not medically necessary.

Background

A variety of chemosensitivity and chemoresistance assays have been clinically evaluated in human trials. All assays use characteristics of cell physiology to distinguish between viable and nonviable cells to quantify cell kill following exposure to a drug of interest. With few exceptions, drug doses used in the assays are highly variable depending on tumor type and drug class, but all assays require drug exposures ranging from several-fold below physiologic relevance to several-fold above physiologic relevance. Although a variety of assays examine chemosensitivity or chemoresistance, only a few are commercially available. Available assays are outlined below.

Methods Using Differential Staining/Dye Exclusion

Differential Staining Cytotoxicity Assay

The Differential Staining Cytotoxicity assay relies on dye exclusion of live cells after mechanical disaggregation of cells from surgical or biopsy specimens by centrifugation. Cells are then established in culture and treated with the drugs of interest at three dose levels: the middle (relevant) dose, which could be achieved in therapy; a 10-fold lower does than the physiologically relevant dose; and a 10-fold higher dose. Exposure time ranges from
four to six days; then cells are restained with fast green dye and counterstained with hematoxylin and eosin (H&E). The fast green dye is taken up by dead cells and H&E differentiates tumor cells from normal cells. The intact cell membrane of a live cell precludes staining with the green dye. Drug sensitivity is measured by the ratio of the number of live cells in the treated samples to the number of live cells in the untreated controls.

EVA/PCD Assay

The EVA/PCD assay (Rational Therapeutics, Long Beach, CA) relies on ex vivo analysis of programmed cell death, as measured by differential staining of cells after apoptotic and nonapoptotic cell death markers in tumor samples exposed to chemotherapeutic agents. Tumor specimens obtained through biopsy or surgical resection are disaggregated using DNase and collagenase IV to yield tumor clusters of the desired size (50-100 cell spheroids). Because these cells are not proliferated, these microaggregates are believed to approximate the human tumor microenvironment more closely. These cellular aggregates are treated with the dilutions of the chemotherapeutic drugs of interest and incubated for three days. After drug exposure is completed, a mixture of nigrosin B and fast green dye with glutaraldehyde-fixed avian erythrocytes is added to the cellular suspensions.2 The samples are then agitated and cytopsin-centrifuged and, after air drying, counterstained with H&E. The end point of interest for this assay is cell death, as assessed by observing the number of cells differentially stained due to changes in cellular membrane integrity.3

Fluorometric Microculture Cytotoxicity Assay

The fluorometric microculture cytotoxicity assay is another cell viability assay that relies on the measurement of fluorescence generated from cellular hydrolysis of fluorescein diacetate to fluorescein in viable cells.4 Cells from tumor specimens are incubated with cytotoxic drugs; drug resistance is associated with higher levels of fluorescence.

Methods Using Radioactive Precursors by Macromolecules in Viable Cells

Tritiated Thymine

Tritiated thymine incorporation measures uptake of tritiated thymidine by DNA of viable cells. Using proteases and DNase to disaggregate the tissue, samples are seeded into single-cell suspension cultures on soft agar. They are then treated with the drug(s) of interest for four days. After three days, tritiated thymidine is added. After 24 hours of additional incubation, cells are lysed, and radioactivity is quantified and compared with a blank control consisting of cells that were treated with sodium azide. Only cells that are viable and proliferating will take up the radioactive thymidine. Therefore, there is an inverse relationship between uptake of radioactivity and sensitivity of the cells to the agent(s) of interest.5

Extreme Drug Resistance Assay

The Extreme Drug Resistance assay (EDR; Exiqon Diagnostics, Tustin, CA; no longer commercially available) is methodologically similar to the thymidine incorporation assay, using metabolic incorporation of tritiated thymidine to measure cell viability; however, single cell suspensions are not required, so the assay is simpler to perform.6 Tritiated thymidine is added to the cultures of tumor cells, and uptake is quantified after various incubation times. Only live (resistant) cells will incorporate the compound. Therefore, the level of tritiated thymidine incorporation is directly related to chemoresistance. The interpretation of the results is unique in that resistance to the drugs is evaluated, as opposed to evaluation of responsiveness. Tumors are considered to be highly resistant when thymidine incorporation is at least one standard deviation above reference samples.

Methods Quantifying Cell Viability Using Colorimetric Assay

Histoculture Drug Resistance Assay

The Histoculture Drug Resistance Assay (HDRA; AntiCancer, San Diego, CA) evaluates cell growth after chemotherapy treatment based on a colorimetric assay that relies on mitochondrial dehydrogenases in living cells.7
Drug sensitivity is evaluated by quantification of cell growth in the three-dimensional collagen matrix. There is an inverse relation between the drug sensitivity of the tumor and cell growth. Concentrations of drug and incubation times are not standardized and vary depending on drug combination and tumor type.

Methods Using Chemoluminescent Precursors by Macromolecules in Viable Cells

Adenosine Triphosphate Bioluminescence Assay

The adenosine triphosphate (ATP) bioluminescence assay relies on measurement of ATP to quantify the number of viable cells in a culture. Single cells or small aggregates are cultured and then exposed to drugs. Following incubation with drug, the cells are lysed and the cytoplasmic components are solubilized under conditions that will not allow enzymatic metabolism of ATP. Luciferin and firefly luciferase are added to the cell lysis product. This catalyzes the conversion of ATP to adenosine di- and monophosphate, and light is emitted proportionally to metabolic activity. This is quantified with a luminometer. From the measurement of light, the number of cells can be calculated. A decrease in ATP indicates drug sensitivity, whereas no loss of ATP suggests the tumor is resistant to the agent of interest.

ChemoFX Assay

The ChemoFX (Helomics Corp., previously called Precision Therapeutics, Pittsburgh, PA) assay also relies on quantifying ATP based on chemoluminescence. Cells must be grown in a monolayer rather than in a three-dimensional matrix.

Methods Using Differential Optical Density

CorrectChemo Assay

Similar to the EVA/PCD assay, the CorrectChemo (previously called the Microculture Kinetic [MiCK]) assay; DiaTech Oncology, Franklin, TN) assay relies on measures of programmed cell death. In the assay, tumor cells are exposed to multiple concentrations of drugs and cultured. The optical density of the cells is measured over time, to create a density-by-time curve. A sudden increase in optical density is associated with cell apoptosis; the extent of drug-induced apoptosis is a measure of the cell’s sensitivity to that agent. As of March 2016, DiaTech no longer offers the CorrectChemo assay commercially.

The rationale for chemosensitivity assays is strongest when there are a variety of therapeutic options and there are no clear selection criteria for any particular regimen in an individual patient.

Regulatory Status

Clinical laboratories may develop and validate tests in-house and market them as a laboratory service; laboratory-developed tests (LDTs) must meet the general regulatory standards of the Clinical Laboratory Improvement Amendments (CLIA). Chemoresistance and chemosensitivity assays discussed in this protocol are available under the auspices of CLIA. Laboratories that offer LDTs must be licensed by CLIA for high-complexity testing. To date, the U.S. Food and Drug Administration has chosen not to require any regulatory review of this test.

Services that are the subject of a clinical trial do not meet our Technology Assessment Protocol criteria and are considered investigational. For explanation of experimental and investigational, please refer to the Technology Assessment Protocol.
It is expected that only appropriate and medically necessary services will be rendered. We reserve the right to conduct prepayment and postpayment reviews to assess the medical appropriateness of the above-referenced procedures. Some of this protocol may not pertain to the patients you provide care to, as it may relate to products that are not available in your geographic area.

References

We are not responsible for the continuing viability of web site addresses that may be listed in any references below.

