Preauthorization is required.

The following Protocol contains medical necessity criteria that apply for this service. The criteria are also applicable to services provided in the local Medicare Advantage operating area for those members, unless separate Medicare Advantage criteria are indicated. If the criteria are not met, reimbursement will be denied and the patient cannot be billed. Please note that payment for covered services is subject to eligibility and the limitations noted in the patient’s contract at the time the services are rendered.

Description

Commercially available genetic tests can guide intervention in symptomatic or asymptomatic people, identify people at risk for future disorders, predict the prognosis of diagnosed disease, and predict treatment response. This conceptual framework offers an outline for evaluating the utility of genetic tests, by classifying the types of genetic tests into clinically relevant categories and developing criteria that can be used for evaluating tests in each category.

This conceptual framework addresses genetic testing in nonreproductive settings. Genetic testing in reproductive settings is addressed in separate Protocols: the Carrier Testing for Genetic Diseases Protocol, the Invasive Prenatal (Fetal) Diagnostic Testing Protocol, and the Preimplantation Genetic Testing Protocol. For categories of genetic testing in which the benefit of testing is for the individual, criteria for medical necessity apply. When the benefit of testing is not for the individual, but for a family member, medical necessity criteria may not apply and the criteria are developed for clinical utility.

Policy

Genetic testing classified in one of the categories below may be considered medically necessary when all criteria are met for each category, as outlined in the Policy Guidelines section:

1. Testing of an affected (symptomatic) individual's germline DNA to benefit the individual (excluding reproductive testing)
 a. Diagnostic
 b. Prognostic
 c. Therapeutic
2. Testing cancer cells of an affected individual to benefit the individual
 a. Diagnostic
 b. Prognostic
 c. Therapeutic
3. Testing an asymptomatic individual to determine future risk of disease

Genetic testing that does not meet the criteria for a specific category is considered **investigational or not medically necessary**, according to the standard definitions used for these terms (see Policy Guidelines).

Genetic testing for other diseases such as but not limited to chronic fatigue, hyperhomocysteinemia, hereditary ataxia, or ADHD (attention deficit hyperactivity disorder) has not been proven to be medically effective and is considered **investigational**.

Genetic testing for mutations in the MTHFR gene is considered **investigational** in all situations.

Use of home testing kits is considered **investigational**.

Policy Guidelines

Medical Necessity Criteria

The criteria listed below for medical necessity represent minimum criteria that must be met in each category to conclude that a test is medically necessary. Genetic testing is considered **medically necessary** for a genetic or heritable disorder when the following are met.

For ALL genetic testing, the condition being tested for must have either:

- Reduced life expectancy; OR
- At least moderate-to-severe morbidity

For the specific categories of testing, the following criteria must also be met:

1. Testing of an affected (symptomatic) individual’s germline to benefit the individual (excluding reproductive testing)
 a. Diagnostic
 i. an association of the marker with the disorder has been established AND
 ii. symptoms of the disease are present AND
 iii. a definitive diagnosis cannot be made based upon history, physical examination, pedigree analysis, and standard diagnostic studies/tests AND
 iv. the clinical utility of identifying the mutation has been established
 1) Leads to changes in clinical management of the condition that improve outcomes; OR
 2) Eliminates the need for further clinical workup or invasive testing; OR
 3) Leads to discontinuation of interventions that are unnecessary and/or ineffective.
 b. Prognostic
 i. An association of the marker with the natural history of the disease has been established AND
 ii. Clinical utility of identifying the mutation has been established,
 1) Provides incremental prognostic information above that of standard testing; AND
 2) Reclassifies patients into clinically relevant prognostic categories for which there are different treatment strategies; AND
 3) Reclassification leads to changes in management that improve outcomes.
c. Therapeutic
 i. Genetic testing identifies variants of a phenotype/metabolic state that relate to different pharmacokinetics, drug efficacy or adverse drug reactions; AND
 ii. Clinical utility of identifying the mutation has been established,
 1) Leads to initiation of effective medication(s) OR
 2) Leads to discontinuation of medications that are ineffective or harmful OR
 3) Leads to clinical meaningful change in dosing of medication that is likely to improve outcomes.

2. Testing cancer cells of an affected individual to benefit the individual
 a. Diagnostic
 i. Genetic testing can establish the cell origin of a cancer when the origin is uncertain following standard work-up; AND
 ii. Clinical utility of identifying the mutation has been established,
 1) Start effective treatment; OR
 2) Discontinue ineffective or harmful treatment
 b. Prognostic
 i. An association of the marker with the natural history of the disease has been established AND
 ii. Clinical utility of identifying the mutation has been established,
 1) Provides incremental prognostic information above that of standard testing; AND
 2) Reclassifies patients into clinically relevant prognostic categories for which there are different treatment strategies; AND
 3) Reclassification leads to changes in management that improve outcomes.
 c. Therapeutic
 i. Association of a mutation with treatment response to a particular drug has been established AND
 ii. Clinical utility has been established,
 1) The patient is a candidate for targeted drug therapy associated with a specific mutation; AND
 2) There is a clinically meaningful improvement in outcomes when targeted therapy is given for the condition

3. Testing an asymptomatic individual to determine future risk of disease
 i. An association of the marker with future disorder has been established AND
 ii. Clinical utility has been established
 1) There is a presymptomatic phase for this disorder in which interventions/surveillance are available; AND
 2) Interventions in the presymptomatic phase are likely to improve outcomes:
 a. Prevent/delay onset of disease OR
 b. Detect disease at an earlier stage for which treatment is more effective OR
c. Discontinuation of ineffective or unnecessary interventions.

Genetic testing is considered **investigational** when the BCBSA TEC criteria are not met, including when there is insufficient evidence to determine whether the technology improves health outcomes.

Genetic testing is considered **not medically necessary** when:

- testing is not considered standard of care, such as when the clinical diagnosis can be made without the use of a genetic test
- testing is not clinically appropriate for the patient’s condition, for example, when it would not change diagnosis and/or management. Other situations where testing is not clinically appropriate include, but are not limited to:
 - testing performed entirely for nonmedical (e.g., social) reasons
 - testing not expected to provide a definitive diagnosis that would obviate the need for further testing.
- testing is performed primarily for the convenience of the patient, physician, or other health care provider.
- testing would result in outcomes that are equivalent to outcomes using an alternative strategy, and the genetic test is more costly.

Limitations of Genetic Testing

- The testing methods may not detect all of the mutations that may occur in a gene
- Genetic testing may identify variants of unknown clinical significance
- Genetic testing may not necessarily determine the clinical outcome
- Different genes can cause the same disease (genetic heterogeneity)
- A mutation in a gene may cause different phenotypes (phenotypic heterogeneity)
- Some disease-causing genes may not yet be identified
- Genetic testing is subject to laboratory error

General principles of Genetic Tests

A test should be cleared or approved by the U.S. Food and Drug Administration (FDA), or performed in a Clinical Laboratory Improvement Amendment (CLIA)-certified laboratory.

The accuracy and indications for the test should be derived from peer-reviewed literature that focuses on three main principles: (1) analytic validity (technical accuracy of the test in detecting a mutation that is present or in excluding a mutation that is absent); (2) clinical validity (diagnostic performance of the test [sensitivity, specificity, positive and negative predictive values] in detecting clinical disease); and (3) clinical utility (i.e., how results of the diagnostic test will be used to change management of the patient and whether these changes in management lead to clinically important improvements in health outcomes).

The following hereditary conditions, but not limited to these, that may be **medically necessary** for genetic testing if they meet the criteria above (Note: additional hereditary conditions may be **medically necessary**, and those addressed in separate protocols/policy are not included here):

- 22q11 deletion syndrome
- Achondroplasia (FGFR3)
- Albinism
- Amyotrophic lateral sclerosis (ALS)
- Angelman syndrome
- Canavan Disease
- Classical lissencephaly
- Congenital adrenal hyperplasia (CAH)
Genetic counseling

Genetic counseling is primarily aimed at patients who are at risk for inherited disorders, and experts recommend formal genetic counseling in most cases when genetic testing for an inherited condition is considered. The interpretation of the results of genetic tests and the understanding of risk factors can be very difficult and complex. Therefore, genetic counseling will assist individuals in understanding the possible benefits and harms of genetic testing, including the possible impact of the information on the individual’s family. Genetic counseling may alter the utilization of genetic testing substantially and may reduce inappropriate testing. Genetic counseling should be performed by an individual with experience and expertise in genetic medicine and genetic testing methods.
Medicare Advantage

The above policy and policy guidelines content is applicable for Medicare Advantage for diagnostic testing, prognostic testing and testing for genetic variants that alter response to treatment or to an environmental factor which meet medically necessary criteria. Because Medicare generally only covers tests that are medically necessary for diagnosis and treatment, panels that are risk assessment testing may be considered not medically necessary.

Background

The purpose of this conceptual framework is to assist in evaluating the utility of genetic tests. In providing a framework for evaluating genetic tests, this Protocol will not attempt to determine the clinical utility of genetic testing for specific disorders. Rather, it provides guidelines that can be applied to a wide range of tests.

This conceptual framework applies only if there is not a separate Protocol that outlines specific criteria for testing. If a separate Protocol does exist, then the criteria for medical necessity in that Protocol supersede the guidelines in this Protocol.

This Protocol does not include cytogenetic testing (karyotyping), biochemical testing, or molecular testing for infectious disease.

This Protocol does not address reproductive genetic testing. There are separate Protocols for genetic testing in the reproductive setting: Carrier Testing for Genetic Diseases; Invasive Prenatal (Fetal) Diagnostic Testing; and Preimplantation Genetic Testing.

The following categories of genetic testing will be addressed in this Protocol:

1. Testing of an affected (symptomatic) individual’s germline DNA to benefit the individual
 a. Diagnostic
 b. Prognostic
 c. Therapeutic
2. Testing cancer cells of an affected individual to benefit the individual
 a. Diagnostic
 b. Prognostic
 c. Therapeutic
3. Testing an asymptomatic individual to determine future risk of disease
4. Testing of an affected individual’s germline to benefit family member(s)

Definitions

Genetic Testing

Genetic testing involves the analysis of chromosomes, DNA (deoxyribonucleic acid), RNA (ribonucleic acid), genes or gene products to detect inherited (germline) or noninherited (somatic) genetic variants related to disease or health.

Carrier Testing

A carrier of a genetic disorder has one abnormal allele for a disorder. When associated with an autosomal recessive or X-linked disorder, carriers of the causative mutation are typically unaffected. When associated with
an autosomal dominant disorder, the person has one normal and one mutated copy of the gene and may be affected with the disorder, may be unaffected but at high risk of developing the disease later in life, or the carrier may remain unaffected because of the sex-limited nature of the disease.

Carrier testing may be offered to people: (a) who have family members with a genetic condition; (b) who have family members who are identified carriers; and (c) who are members of ethnic or racial groups known to have a higher carrier rate for a particular condition.

Germline Mutations

Mutations that are present in the DNA of every cell of the body, present from the moment of conception. These include cells in the gonads (testes or ova) and could, therefore be passed on to offspring.

Somatic Mutations

Variations that occur with the passage of time and are restricted to a specific cell or cells derived from it. If these variations are limited to cells that are not in the gonads, these variations will not be passed on to offspring.

Pharmacogenomics

Pharmacogenomics studies how a person’s genetic makeup affects his or her body’s response to drugs.

Regulatory Status

Clinical laboratories may develop and validate tests in-house and market them as a laboratory service; laboratory-developed tests (LDTs) must meet the general regulatory standards of the Clinical Laboratory Improvement Amendments (CLIA). Most genetic tests are lab tests available under the auspices of CLIA. Laboratories that offer LDTs must be licensed by CLIA for high-complexity testing. To date, the U.S. Food and Drug Administration has chosen not to require any regulatory review of these LDTs.

Related Protocols

Carrier Testing for Genetic Diseases

General Approach to Evaluating the Utility of Genetic Panels

Genetic Testing for Noninvasive Prenatal Testing

Preimplantation Genetic Testing

Services that are the subject of a clinical trial do not meet our Technology Assessment Protocol criteria and are considered investigational. *For explanation of experimental and investigational, please refer to the Technology Assessment Protocol.*

It is expected that only appropriate and medically necessary services will be rendered. We reserve the right to conduct prepayment and postpayment reviews to assess the medical appropriateness of the above-referenced procedures. *Some of this Protocol may not pertain to the patients you provide care to, as it may relate to products that are not available in your geographic area.*
References

We are not responsible for the continuing viability of web site addresses that may be listed in any references below.

6. NGS Local Coverage Determination (LCD): Molecular Pathology Procedures (L35000), Revision Effective Date For services performed on or after 01/01/2016.